Analog & Power

IBIS 建模-第2 部分: 為何以及如何創建您自己的 IBIS 模型 (II)

本文提供創建 IBIS 模型時如何使用 LTspice 的指南,涵蓋從 IBIS 預建模程式到 IBIS 模型驗證的整個過程,並詳細介紹如 何在 LTspice 中為 IBIS 模型準確擷取 I-V、V-T、斜坡和 C_comp 數據。此外,本文並提供定性和定量 FOM 方法,用於驗 證 IBIS 模型的性能。該應用案例展示了為假設的 ADxxxx 三態數位緩衝器開發 IBIS 模型的過程,其中包含適合輸入和三 態 CMOS 介面的可用 IBIS 範本,有助於即刻開始創建您的 IBIS 模型。

> ■作者: Rolynd Aquino, Janchris Espinoza/產品應用工程師 Francis Ian Calubag / 系統應用程師

建構 IBIS 模型

所有提取的 I-V 和 V-T 數據都將編譯到 BIS 模型 (.ibs) 文件中。以下是 IBIS 檔的實際範本,使用 者可以在建構 IBIS 模型時用作參考。

.ibs 檔以 [IBIS Ver] 關鍵字開頭,後接檔案名 和修訂號。IBIS 版本 3.2 將在 [IBIS Ver] 關鍵字中 使用,因其是建構 3 態輸出緩衝器所需的最低版 本。.ibs 檔的檔案名應和 [檔案名稱] 關鍵字中的檔 案名相同;否則,解析器會將其檢測為錯誤。此外, 檔案名不得包含任何大寫字母,因為解析器只允許 檔案名使用小寫字母。有關其他重要的關鍵字,將 在後面章節中討論。

.ibs 檔的下一部分包括 [組件]、[製造商]、[封 裝] 和 [接腳] 關鍵字。ADxxxx 有兩個輸入緩衝器 (DIN1 和 EN) 和一個輸出緩衝器 (DOUT1),因此其 IBIS 模型總共有三個緩衝器模型。[封裝] 關鍵字透 過 RLC 封裝寄生値作為元件的封裝模型。所有元件 緩衝器的模型名稱在[接腳] 關鍵字下定義,這與在 [模型] 關鍵字下定義命名變數類似。

	**********			************	
Lane and the second			Model rem	s_dil	
********	**********	*****		***********	
1					
[Hodel]	cmos_d:	11			
Model_type Vinl=0.36	Input				
Vinh=1.44					
Varia	blo	typ		min	883
C_comp		1.64	5481e-012	NA	NIA.
1.1	5				
Temperatur	e Range]	25		NA	NA
[Voltage Range]		1.8		NA	NA
[Power Clan	p Reference]	1.8	5	NA	NA
[GND Clemp	Reference]	0		MA	NA
í.					
Power_clas	w1				
Voltage	I (typ)		2 (min)	I (max	c)
-1.800000	1,8986458	+00	NA	NA	
-1.700000	1,7145248	+00	NA	NA	
-1.609000	1.5118168	+00	NA	NA	
1					
1.700000	7,6019605	-12	NA	NA	
1.800000	2.800000E	-12	NA	NA	
3.600000	-4.400000E	-12	NA	NA	
10010 -1					
four-creati	· · · · · · · · · · · · · · · · · · ·		1.1.2016.1	* 1922	1
1 800000	-1 0057757	-00	MA	1 1000	L.)
1.000000	-1.0992/32	+00	173	150	
-1 600000	-1.0100000	+00	ENPS NTA	124	
-1.000000	-1.3013335	+00	PIM	1940	
700000	1 4552007	211	NTA.	67.8	
800000	1.6206497	-11	NA	NA.	
3,600000	2.1400007	-11	NA	NA	
1		80.00	100	0.000	

0		E	sd of Hodel	tth_remus;	

nalog & Power

在.ibs 檔的下一部分,使用測量得出的 I-V 和 V-T 數據建構元件的數位緩衝器的模型。緩衝器模 型的内容因 Model_type 變數中指定的緩衝區類型 而異。由於模型 cmos_di1 是一個輸入緩衝器,其 緩衝器模型只包含 C_comp、[Power_Clamp] 和 [GND_Clamp] 數據。輸入緩衝器模型並包括 V_{INH} 和 V_{INL} 值,這兩個值都可以在元件的產品手冊中找到。 由於 DIN1 和 EN 都是輸入緩衝器,所以其緩衝器模 型具有相同的結構。

另一方面,3 態緩衝器模型包含一些與輸入緩 衝器模型類似的關鍵字,但包含額外的 I-V 和 V-T 數據。cmos_out1 的緩衝器模型包括一個額外的子 參數 Cref,其代表輸出電容負載,並包括 Vmeas, 其代表基準電壓位準。通常情況下,使用的 Vmeas 是 VDD 值的一半。

	Modelton	os_out	1	0000000000	
[Model1	cmos_out	1			
Model_type Cref=15pF	3-state				
Vmeas=0.9					
Variable		typ		10.4.11	296X
C_comp		4.143	501E-11	NA	NA
[Temperature R	Tegas	25		BEA	MA
[Voltage Range	1	1.8		NA	NA
[POWER Clemp Ro	eference]	1.8		NA	NA
[GND Clamp Reference] 0			NA	NA	
[Fullup Referes	ice]	1.8		NA	54A
(Pulldown Refer	rence	0		MA	NA
[POWER_close]					
Voltage	I (typ)		I. (min] [(maz)	
-1.800000E+00	2.074265	E+00	NA	NA	
-1.700000E+00	1.887999	E+00	NA	NA	
-1.600000E+00	1.685262	E+00	NA	NA	
1.700000E+00	-6.47190	0E-11	NA	NA	
1.800000E+00	-1.60690	3E-10	NA	NA	
3.600000E+00	-8.01213	1E-10	NA	NA	
[GMD_clamp]					
Voltage	1 (typ)	19923	- I - I#IR	1 (fmar)	
-1.800000E+00	-2-04725	7E+00	NA	NA	
-1.700000E+00	-1.86116	5E+00	NA	NA	
-1.600000E+00	-1.65842	1E+00	NA	NA	
H	101037800	199220	10.00	15221	
1.700000E+00	1.221660	E=10	NA	NA	
1.800000E+00	1.638958	E-10	NA	NA	
3.6000000000000000000000000000000000000	5.271379	E-10	NA	NA	

除了 C_comp、[Power_Clamp] 和 [GND_ Clamp],3 態緩衝器還包含額外的 I-V 數據:[上拉] 和 [下拉]。

最後,所有 IBIS 模型都應該用 [結尾] 關鍵字 作為結尾。

[Pullup] Voltage I -1.800000E+00 -1.700000E+00 -1.600000E+00	(typ) 2.075567E+00 1.889618E+00 1.686874E+00	I (min) NA NA NA	I (max) NA NA NA
1.700000E+00 1.800000E+00 3.600000E+00	-2.166668E-02 -2.181376E-02 -2.453158E-02	NA NA NA	NA NA NA
[Pulldown] Voltage I -1.800000E+00 -1.700000E+00 -1.600000E+00	(typ) -2.048355E+00 -1.862534E+00 -1.659785E+00	I (min) NA NA NA	I (max) NA NA NA
1.700000E+00 1.800000E+00 3.600000E+00	1.934561E-02 1.942086E-02 2.086263E-02	NA NA NA	NA NA NA
[Rising Waveform	n]		
$R_{fixture} = 50$			
V_fixture = 1.8			
time	V (typ)	V (min)	V(max)
0.000000E+00	8.722465E-01	NA	NA
4.000854E-10	8.722824E-01	NA	NA
8.001709E-10	8.723076E-01	NA	NA
3.880829E-08	1.799903E+00	NA	NA
3.920837E-08	1.799910E+00	NA	NA
4.000000E-08	1.799923E+00	NA	NA
I			
[Falling Wavefor	rm]		
$R_{ixture} = 50$			
time	V (typ)	V (min)	V(max)
0.00000E+00	1.800005E+00	NA	NA
5.001068E-10	1.799995E+00	NA	NA
1.000214E-09	1.799995E+00	NA	NA
4.851036E-08	8.723745E-01	NA	NA
4.901047E-08	8.723730E-01	NA	NA
5.00000E-08	8.723702E-01	NA	NA
 [Rising Waveform	n]		
R_fixture = 50	~		
V_fixture = 0			
time	V (typ)	V (min)	V (may)
0.000000E+00	-5.744911E-06	NA	NA
1.050224E-09	7.964322E-06	NA	NA
2.100449E-09	4.059370E-05	NA	NA
1			
1.018718E-07	1.004326E+00	NA	NA
1.029220E-07	1.004331E+00	NA	NA
1.050000E-07	1.004340E+00	NA	NA

IBIS 模型驗證

正如本系列文章的第1部分所述,IBIS 模型驗 證由解析器測試和相關過程組成。這些是確保 IBIS

Analog & Power

檔符合 IBIS 規範的必要步驟,並且模型的執行盡可 能接近參考 SPICE 模型。

解析器測試

對於上一節中創建的 IBIS 檔,首先應進行解 析器測試,然後再繼續執行相關過程。ibischk 是用 於檢查 IBIS 檔的 Golden Parser。其用於檢查 IBIS 檔是否符合 IBIS 協會設定的規範。有關更多資訊, 請參閱 ibis.org。本文撰寫時,使用的最新解析器是 ibischk 版本 7。

Visual IBIS Editor 工具有助於簡化語法檢查。 但是,如果用戶沒有這些工具,可以瀏覽 ibis.org 冤 費下載可執行代碼。它是在各種作業系統上編譯的, 所以用戶不必擔心應使用哪種作業系統。

相關程式

在這個驗證階段,需要檢查 IBIS 模型的性能是 否與參考模型(在本例中為 SPICE 模型)相同。表 7 顯示不同的 IBIS 品質級別(從0級到3級)。其 描述了經受不同程度測試後,IBIS 模型的精準程度。 在本例中,由於參考模型是 ADxxxx SPICE 模型, 所以產生成的 IBIS 模型的品質等級為2a。表示其 通過了解析器測試,具有產品手冊中所描述的一組 正確完整的參數,並通過了相關程式。

表 7:IBIS 品質等級

品質等級	說明
0 級	通過 Golden Parser (ibischk)
1 級	與檢查清單檔中一樣完整、正確。
2a	與模擬相關
2b	與測量相關
3 級	以上全部

要將 IBIS 模型與參考 SPICE 模型關聯起來,可以按照一些常規步驟執行操作。圖 30 中的流程圖總結了這些步驟。

設定品質因數

關聯的基礎是在相同的載入條件和輸入刺激

下,IBIS 模型的行為應該與 SPICE 模型數位介面 相同。這表示從理論上,其輸出應該重疊在一起。 一般來說,有兩種方法可以描述 IBIS 模型的輸出 與 SPICE 參考模型的接近程度:定性方法和定量方 法。使用者可以使用此兩種方法來確定 IBIS 模型與 SPICE 模型之間的關係。

定性 FOM 測試需要依靠使用者的觀察能力。 其要求對兩個輸出進行目視檢查,以確定是否通過 相關性檢查。這可以透過疊加 IBIS 和 SPICE 的輸 出結果來實現,並使用工程判斷來確定圖形是否相 關。在進行定量 FOM 測試之前,這可以作為相關性 初步檢查。當介面以相對較低的頻率或位元速率運 行時,此測試就已足夠。

IBIS IO 緩衝器精度手冊中提出了另一種定性 FOM 測試,即曲線包絡度。其使用過程電壓溫度極 値定義的最小和最大曲線。最小和最大曲線作為相 關性的邊界。要通過測試,IBIS 結果中的所有點都 應該在最小和最大曲線之内。此種方法在本文中不

圖說 30: IBIS 與 SPICE 模型的關聯流程圖。

類比與電源技術

nalog & Power

適用,因其僅適用於典型條件。

定量 FOM 測試使用數學運算來衡量 IBIS 與 SPICE 之間的相關性。在 IBIS IO 緩衝器精度手冊 中也提出了曲線包絡度,其使用 IBIS 和 SPICE 輸 出的數據點。計算 IBIS 和參考數據點之間 x 軸或 y 軸差値的絶對値除以軸上使用的總範圍和點數的乘 積的總和。具體如公式 3 所示,此方法適合作為檢 測本文所示的應用案例的關聯方法。但是,還需要 考慮其他因素。公式 3 中提供的 FOM 要求將 IBIS 和 SPICE 的結果映射到一個通用的 x-y 網格上,這 將用到數值演算法和插值方法。如果用戶想要執行 快速定量 FOM 測試,本文提出了另一種方法,即使 用曲線和 x 軸所限定的面積的曲線面積度量。

$$FOM_{COM} = 100\% \times \left[1 - \frac{\sum_{i=1}^{N} |x_i(reference) - x_i(IBIS)|}{\Delta x \times N}\right]$$
(3)

曲線面積度量以 SPICE 結果為參考,比較 IBIS 曲線下的計算面積。具體如公式4所示。但是, 在進行曲線面積度量測試之前,所創建的模型必須 通過定性測試。這確保了 IBIS 和 SPICE 曲線是同 步的,並且相互疊加。在擷取曲線下的面積時,因 為對 IBIS 和 SPICE 結果使用了相同的方法,所以 用戶可以使用數値方法,例如梯形規則或中點規則。 在使用這種方法時,建議使用盡可能多的點,以更 接近該面積。

$$FOM_{CAM} = 100\% \times \left[1 - \frac{|A_{IBIS} - A_{SPICE}|}{A_{SPICE}}\right]$$
(4)

驗證 ADxxxx IBIS 模型

IBIS 模型驗證的第一步是解析器測試。圖 31 圖說 31:ADxxxx 解析器測試結果。

Image <td< th=""><th>ADI IB19 Nodeling</th><th>10</th></td<>	ADI IB19 Nodeling	10
	THE Year 2 2 F is Exact 2 2 F is Exact 1 5 F is Exact 1 5 Exact 2 Exact 2 Exac	
	(Copyright)	
	This works to an exclusive property of Analog Devices for and is not to be reacid or redistributed without the written permission of Analog Devices	
	Copyright(u) 2021 Analog Devices, All Kights Benerved	
Restors 0		1
File Fussed		- 15
a 100		140

顯示 adxxxx.ibsIBIS 模型檔的解析器測試結果,該 檔是使用 HyperLynx Visual IBIS Editor 編寫的。使 用者執行解析器測試時,目標是不會出現任何錯誤。 如果出現任何錯誤或警告提示,模型建構人員需要 加以解決。如此可以保證 IBIS 模型在模擬工具之間 的相容性。

下一步是設定 FOM 參數。本文僅使用定性 FOM 和曲線面積度量作為衡量相關性的方法。 該測試可能會使用 IBIS 和 SPICE 在相同負載條 件和輸入刺激下的瞬態響應曲線。曲線面積度量 FOM≥95% 才能通過相關性測試。DOUT1、DIN1 和 EN 的相關性如下所示。

DOUT1

圖 32 顯示了 LTspice 上用於檢測 DOUT1 相關 性的 SPICE 測試台。在原理圖上提供適當的電壓電 源以致能驅動器,並且為 DIN1 接腳提供脈衝訊號 源來驅動 DOUT1。要在 LTspice 中完成 DOUT1 驅 動器模型,還需要使用額外的元件。C_comp 代表 晶片電容。將 C_comp 和 C_load 添加到 LTspice 模 型後,繼續加入 RLC 封裝寄生 (R_pkg、L_pkg、 C_pkg) 和 C_load。

DOUT1 IBIS 模型相關性測試台建立在 Keysight先進設計系統(ADS)上,如圖33所示。 與LTspice測試台一樣,使用相同的輸入激發、C_ load、電壓電源和瞬態分析。但是,未在原理圖中 顯示 C_comp和 RLC 封裝寄生,因其已經包含在3 態 IBIS 模組中。

瞬態響應曲線根據 C_load 測量得出。我們比較 LTspice 和 ADS 結果,並將其疊加在一起進行定性 FOM 分析。如圖 34 所示,LTspice 和 ADS DOUT1 的響應非常相似。可以使用曲線和度量來量化它們之間的差異。計算 1 µs 瞬態時間内曲線下的面積。計算得出的曲線面積度量為 99.79%,滿足設定的 ≥95% 的通過測試條件。所以,DOUT1 IBIS 模型與 SPICE 模型相關。

Analog & Power

圖 34: LTspice 與 IBIS 模型 OUT1 回應。

DIN1 和 EN

在驗證輸入埠時,透過 定性 FOM 和曲線面積度量 來關聯 LTspice 和 ADS 的 瞬態響應曲線。LTspice 中 的測試台如圖 35 所示。這 適用於 DIN1 和 EN 接腳。 與 DOUT1 一樣,將擷取的 C_comp 置於 DIN1 埠位置, 後接 RLC 封裝寄生效應。 然後,連接 50 Ω R_series 電阻,該電阻後接輸入刺激 脈衝電壓電源。測量回應 的探頭點在 DIN1_probe 位 置。

用 於 驗 證 輸 入 埠 的 Keysight ADS 測試台如圖 36 所示。同樣,在輸入埠 前放置一個 R_series 50 Ω 電阻,並使用相同的輸入 脈衝刺激。此處未顯示 C_ comp 和 RLC 寄生效應,因 其已經包含在 IBIS 模組中。 用於測量瞬態響應的探頭位 於 DI1_probe 位置。

將 LTspice 和 ADS 的 瞬態響應曲線疊加在一起 進行 FOM 定性測試。如圖 37 所示,曲線是相同的, LTspice 曲線完全與 ADS 曲 線重疊。計算得出的 DI1 的 曲線面積度量為 100%,滿 足所設定的≥95% 的通過測 試條件。EN 接腳相關性結 果也提供了相同的圖形和曲 線面積度量。

47

圖 35: LTspice DI1 相關性測試台。 1PSV TRAN O 1U TEMP 25 VDD1 1.4 VDC DIT outs ANT 0.1595 C pkg1 C comp1 EN 0.370p 1.6450 PULSE(0 1.8 0 0.1U 0.1U 0.4U 1U) 圖 36: ADS DI1 相關性測試台。 -TRANSIENT V DC SRC1 Vdc=1.8 V Tran Tran1 StopTime=1 usec MaxTimeStep=1.0 nsec DI1 probe VtPulse in: R VDI out R series VIow=0 V R=50 Ohm Vhigh=1.8 V IBIS 1 Delay=0 nsec IBIS1 Edge=linear IbisFile="adxxx.ibs" Rise=0.1 usec ComponentName="adXXXX" Fall=0.1 usec PinName="2" Width=0.4 usec ModelName="cmos_di1" Period=1 usec SetAllData=ves DataTypeSelector=Typ UsePkg=yes

總結

本文介紹如何使用 LTspice來提取數據和建構 IBIS模型。並提出透過定 性FOM和曲線面積度量的 定量FOM將IBIS模型與 參考SPICE模型關聯起來 的方法。如此便可以讓使用 者確信IBIS模型的行為與 SPICE模型類似。儘管還 有本文未介紹其他類型的數 字IO,但提取C_comp、 I-V數據和V-T數據的程式 可以作為創建其他類型IO 模型的基礎。

您可以免費下載和安 裝LTspice,並開始創建自 己的IBIS模型。

參考電路

- Casamayor, Mercedes。 「AN-715 應用筆記:走近 IBIS 模型: 什麼是 IBIS 模 型?它們是如何產生的?」 ADI, 2004 年。
- ■IBIS。I/O 緩衝器精度手冊。 IBIS 開放論壇,2000年4 月。
- Roy Leventhal 和 Lynne Green。半導體建模:用於 訊號、功率和電磁完整性模 擬。Springer, 2006 年。
- Michael Mirmak、John Angulo、Ian Dodd、Lynne Green、Syed Huq、Arpad Muranyi、Bob Ross。IBIS 建模手冊(IBIS 4.0版)。 IBIS開放論壇,2005年9 月。 CTA