IBIS 建模一第2部分:

爲何以及如何創建您自己的 IBIS 模型 (I)

本文提供創建 IBIS 模型時如何使用 LTspice 的指南,涵蓋從 IBIS 預建模程式到 IBIS 模型驗證的整個過程,並詳細介紹如何在 LTspice 中為 IBIS 模型準確擷取 I-V、V-T、斜坡和 C_comp 數據。此外,本文並提供定性和定量 FOM 方法,用於驗證 IBIS 模型的性能。該應用案例展示了為假設的 ADxxxx 三態數位緩衝器開發 IBIS 模型的過程,其中包含適合輸入和三態 CMOS 介面的可用 IBIS 範本,有助於即刻開始創建您的 IBIS 模型。

■作者: Rolynd Aquino, Janchris Espinoza/ 產品應用工程師 Francis Ian Calubag / 系統應用程師

在建構任何系統時,模擬都發揮著關鍵作用。 其協助設計人員預見問題,進而避免費時且成本高 昂的修改。我們的目標始終是一次就成功!在模擬 高速數位介面時,如果設計不當,簡單的 PCB 佈線 可能會影響訊號品質。在訊號完整性模擬中,IBIS (輸入/輸出緩衝器資訊規範)模型用來表示元件的 數位介面。

如IBIS 系列文章的第 1 部分所述,IBIS 是一個行為模型,透過以表格形式列出的電流與電壓 (I-V) 和電壓與時間 (V-T) 數據來描述元件的數位介面的電氣特徵。IBIS 模型應儘量準確,且不含任何解析錯誤,避免在之後使用時出現問題。此外,對於具有數位介面的每個零件或元件,都應該提供可用的 IBIS 模型。如此當客戶需要時,可直接從製造商的網頁上下載。但是,事實並非總是如此。對於IBIS 模型使用者,他們常遇到的一個問題就是模型的可用性。當其在設計中選用的零件沒有 IBIS 模型時,其產品開發可能受阻。

IBIS 模型最好是由其製造商提供;但是,使用者也可以創建 IBIS 模型。本文介紹如何使用LTspice,基於 SPICE 模型創建最基礎的 IBIS 模型。下文使用 IBIS 建模手冊 (IBIS 4.0 版)中的規格來介

紹 LTspice 模擬設定。並介紹如何使用定性和定量 品質因數來驗證 IBIS 模型。

何謂「最基本的」IBIS 模型?

為了協助客戶使用 LTspice 創建基本的 IBIS 模型,需要先定義「基本」一詞。基本的 IBIS 模型不僅取決於 I/O 模型關鍵字,還取決於需要建模的數位緩衝器的類型。這表示需要重新審視 IBIS 的早期版本,以定義建立緩衝器模型需要滿足的最低要求,以及當時建模的數位介面的類型。事實證明,單端CMOS 緩衝器是可以使用 IBIS 建模的最簡單的數位 IO 之一,本文將予以介紹。

圖 1 顯示 3 態 CMOS 緩衝器 IBIS 模型的結構。 如第 1 部分所述,IBIS 模型中的元件或關鍵字取決 於模型類型。表 1 匯總列出基本的 IBIS 模型的元件, 具體由 Model type 決定。

應用案例

在本文中,我們將使用一個假設的 ADxxxx 元件的 LTspice 模型來創建 IBIS 模型。它是一個具有致能接腳的單輸入和單輸出數位緩衝器。因此,得到的 IBIS 模型將具有兩個輸入 (DIN1 和 EN)、一個

圖 1:3 態 CMOS 緩衝器的 IBIS 模型。

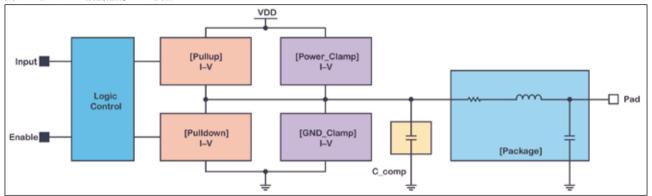


表 1: 基於 Model type 的 IBIS 模型元件匯總

Model_type	[封裝]	C_comp	[GND_ Clamp]	[Power_ Clamp]	[下拉]	[上拉]	V-T 表	[斜坡]
輸入	~	v	٧	v	_	_	_	_
3 態	v	v	v	v	>	V	v	V
I/O	v	v	v	v	>	V	v	v

溫度、積體電路 (IC) 封裝類型、 元件接腳排列、 數位輸出時序

三態輸出 (DOUT1)。

一般來說,產生 IBIS 模型有五個基本步驟:

- ■建立預建模程式。
- ■對從 SPICE 模型中擷取的 C_comp、V-I 和 V-T 數據進行 LTspice 模擬。
- ■格式化 IBIS 檔。
- ■使用 IBIS 解析器測試檢查檔。
- ■比較 IBIS 模型與 SPICE 模型在相同載入條件下的 模擬結果。

IBIS模型提供典型數據、最小數據和最大數據。其透過工作電源電壓範圍、溫度和製程來確定。 為精簡起見,本文只討論典型條件。

Ibischk Golden Parser 系列可用於檢查 IBIS 模型是否符合 IBIS 規範。ibischk 可執行檔可從 IBIS. ORG 網頁冤費獲取。本文使用整合 ibischk 的協力廠商 IBIS 模型編輯軟體。

預建模程式

在開始模擬之前,用戶應該下載元件的產品手冊,並安裝 SPICE 模型和 LTspice 檔。透過確定零件具備的數位介面數量和類型(例如,輸入、開漏、三態等),對零件進行初始評估。

根據元件產品手冊,確定工作電源電壓、工作

規格的載入條件 (RLoad 和/或 CLoad),以及數位輸入的低位準輸入電壓 (VINL)和高位準輸入電壓 (VINH)。ADxxx SPICE 模型如圖 1 所示,其指標參數列在表 2。

圖 2: Adxxxx 3 態數位緩衝器 SPICE 模型。

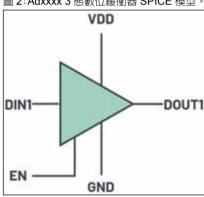


表 2:ADxxxx 產品手冊參數

產品手冊參數	値
VDD	1.8 V(典型値)
工作溫度	25oC
V _{INL}	0.3 × VDD
V _{INH}	0.7 × VDD
IC 封裝	6 接腳 SOT-23
CLOAD	15 pF

與IC 封裝模型相關的關鍵字是 [Package]。其

部分内容。

包含 RLC (電阻 - 電感 - 電容)寄生參數,代表從晶片焊墊到 IC 焊墊/接腳的連接。此資訊可從製造商獲得。也可以查找另一個 IBIS 檔的 [Package] 數據,

只要該元件採表3:6接腳SOT-23封裝寄生參數

用的封裝與正在評估的元件完全相同,並且來自同一製造商。6接腳

[封裝]					
變數	典型値	最小値	最大値		
R_pkg	1.595E-01	NA	NA		
L_pkg	4.455E-09	NA	NA		
C_pkg	0.370E-12	NA	NA		

SOT-23 封裝的元件封裝寄生參數如表 3 所示。

元件接腳排表4:ADxxxx接腳列表

列如表 4 所示。關鍵字 [Pin] 用於描述接腳及其對應的模型名稱。[Pin] 一般為3 列格式。第一列是接腳編號,

[Pin]	Signal_name	Model_name
1	VDD	Power
2	DIN1	cmos_di1
3	EN	cmos_en
4	DOUT1	cmos_out1
5	GND	GND
6	NC	NC

第二列是接腳描述,第三列是模型名稱。有些封裝包含類似的接腳 (VCC、GND)。這些接腳可以按模型分組和描述。在這種情況下,由於 SPICE 模型沒有給出有關內部電晶體級原理圖的資訊,因此最好為每個數位介面創建單獨的模型。在 IBIS 檔中,模型名稱 "Power" 和 "GND" 用於命名電源和接地接腳。非數位介面和「請勿連接」接腳則描述為 "NC"或無連接。請注意,模型名稱是區分大小寫的。由於在稍後的建模程式中還會用到,所以需給出具體的模型名稱。

ADxxxx 真值表如表 5 所 表 5:ADxxxx 真值表

示。這在建立 LTspice 模擬時 非常有用。還必須要知道如何 將 DOUT1 接腳設定為高阻抗 (高阻)模式、邏輯 1 和邏輯 0。

ICO NEWOOK FREEZE				
EN	DIN1	DOUT1		
0	0	高阻		
0	1	高阻		
1	0	0		
1	1	1		

LTspice 設定和模擬

一般來說,IBIS 模型透過前面提到的 I-V (電流與電壓)和 V-T (電壓與時間)數據描述數位緩衝器的行為。進行 IBIS 建模時,每種類型的數位介面都擁有一組自己的 I-V 和/或 V-T 數據,如表 1 所示。表 6 更加詳細列出了這些數據集。注意查看每個數

表 6: 輸入和 3 態介面的 I-V 和 V-T 數據集

	IBIS 關鍵字		輸入	3態
	C_comp		必需	必需
	Z			
	[Power_Clamp]		推薦	推薦
V-I 數據	₹ [GND_Clamp]		推薦	推薦
[上		上拉]	_	必需
	[下拉]		_	必需
	[上升波形]	載入至 VDD	_	推薦
V-T 數據		載入至 VDD	_	推薦
	[下降波形]	載入至 VDD	_	推薦
		載入至 VDD	_	推薦
	[斜坡]		_	必需

據集的注釋。那些標記為「推薦」的數據,表示這 些數據缺失不會在 ibischk 解析器測試中導致誤差。 但是,這些數據集對通道模擬有一定的作用。例如, 鉗位元數據有助於分析訊號反射。

[Power_Clamp] 和 [GND_Clamp]

[GND_Clamp] 和 [Power_Clamp] 透過以表格形式列出的 I-V 數據顯示數位緩衝器的靜電放電(ESD) 元件的行為。[Power_Clamp] 表示以 VDD 為基準的 ESD 元件的整體行為,接地箝位表示以GND 為基準的 ESD 元件的整體行為。

在 LTspice 中,I-V 數據可以使用 .DC SPICE 命令 / 指令進行測量。DOUT1 的接地箝位用圖 4 所

圖 3:[Power_Clamp] 和 [GND_Clamp] 關鍵字結構的概念圖。

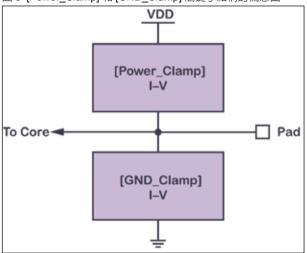


圖 4: ADxxxx DOUT1 接地箝位設定。

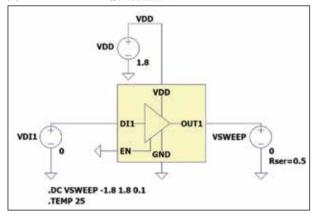


圖 5: 接地箝位模擬結果。

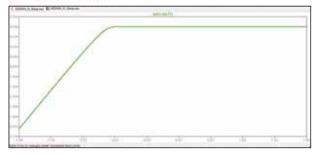


圖 6: 將模擬數據匯出為文本。

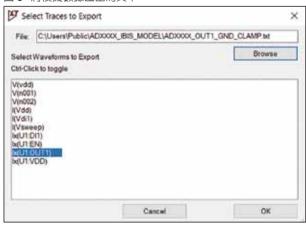
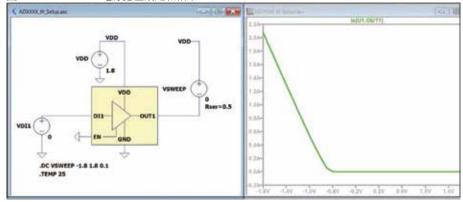



圖 7: ADxxxx OUT1 電源箝位設定和結果。

示設定進行測量。在該設定中,使用適當的電源電 壓將該元件配置為高阳態模式 (請參見表 5)。這可 以確保將 ESD 元件與核心電路隔離。VSWEEP 是 以 GND 為基準的掃描電壓。使 VSWEEP 基準電壓 接地,確保只顯示 GND 箝位 ESD 元件的特徵。

根據 IBIS 規格,應掃描電壓軌以外(最好從 -VDD 到 2 × VDD) 的 I-V 數據,本例中是從 -1.8 V 到 +3.6 V。透過直接執行此操作,掃描 VDD 以 外的電壓將會開啓電源箝位 ESD 元件。為了避免 這種情況,首先在一1.8 V至+1.8 V範圍内掃描 VSWEEP,並使用外推方法增加 3.6 V 數據點。此 方法適用於所有 I-V 數據集。

另外,請注意所有 I-V 數據集最多只接受 100 個數據點。如果數據點超過這個數目,在 ibischk 解 析器測試中會提示錯誤。設定.DC 命令的增量,使 得到的數據點數量小於或等於99。這是為了容納用 於2×VDD外推的一個額外數據點。

進行直流掃描時,模擬中可能出現非常大的反 向電流。要解決這個問題,將起始掃描從近似二極 體勢壘電位 (-0.7 V) 設定為 VDD (+1.8 V)。然後將 數據外推至符合 -VDD 至 2 × VDD I-V 數據。另一 種方法是將一個小電阻 Rser 與 VSWEEP 串聯,以 限制極端電流。

按一下運行按鈕,LTspice 開始運行模擬。由於 正在評估 DOUT1,所以目標節點為 lx(U1:DOUT1)。 雖然從技術角度來看 I(VSWEEP) 也是正確的,但 IBIS 模型需要 Ix(U1:DOUT1) 上的電流極性。這是為了大 幅減少 I(VSWEEP) 數據的進一步格式化,使其適合模

> 型。結果應該如圖 5 所示。模擬 完成後,先按一下結果視窗保存 數據,然後按一下檔-> 將數據 匯出為文本。導航至要保存的目 録,按一下受測節點,然後按一 下 OK(如圖 6 所示)。

[Power Clamp] 數據提取 與接地箝位元設定類似,因此掃 描電壓 VSWEEP 以 VDD 為基 準。設定和結果如圖7所示。

[下拉]和[上拉]

圖 8 顯示了 I-V 關鍵字結構的概念圖。[下拉] 和 [上拉]表示緩衝器中上拉和下拉元素的行為。如

圖 8:I-V 關鍵字結構的概念圖。

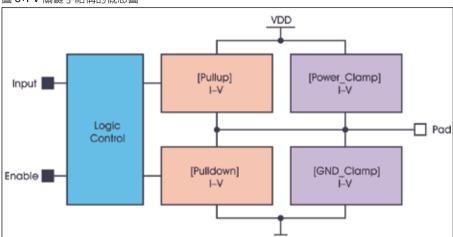


圖 9:ADxxxx OUT1 下拉設定。

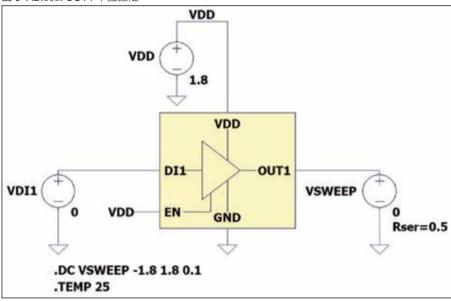
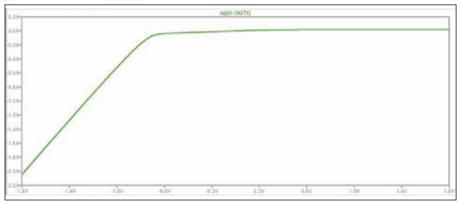



圖 10:ADxxxx OUT1 下拉圖。

果以圖表形式表示,其看起來就像 MOSFET 的 I-V 特徵曲線。在擷取 [下拉]和 [上拉]數據時,瞭解 如何透過元件的真值表操控從輸出接腳輸出的訊號

> 非常重要。擷取[下拉]和[上拉] 數據的設定與[GND_Clamp] 和[Power_Clamp]類似,即 DOUT1接腳致能,且不處於高 阻模式。

要 擷 取 [下 拉]數據,DOUT1接腳應設定為邏輯 0 輸出或 0 V。所以,必須設定適當的電源電壓,如圖 9 所示。對EN接腳施加 1.8 V 的等效邏輯高壓,以使能 DOUT1接腳,對DIN1接腳施加邏輯 0 或 0 V,將 DOUT1接腳設定為邏輯0輸出。可以透過真值表(表 5)進行確認。結果如圖 10 所示。

放大[下拉]數據,其類似於MOSFET的I-V特徵曲線,如圖 11 所示。

在保存下拉數據時,請注 意其構成了[GND_Clamp]和 [下拉]的總電流。圖 12 更可 以說明這一點。要移除[GND_ Clamp]組件,只需從[下拉] 保存數據中逐點減去它。為了 簡化這一操作,[GND_Clamp] 和[下拉]直流分析的電壓增 量、開始電壓和結束電壓必須 相同。

獲取上拉數據的設定如圖 13 所示。提供適當的電源電壓,以將 DOUT1 設定為邏輯 1 (1.8 V)。這將確保上拉元件啟動/開啟。然後,VSWEEP也在一1.8 V至+1.8 V範圍內掃描,

圖 11: ADxxxx DOUT1 下拉圖 (縮放視圖)。

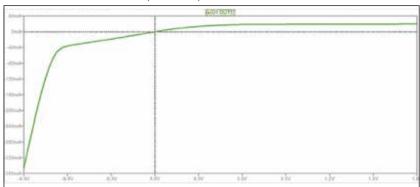


圖 12: 來自下拉保存數據的實際電流。

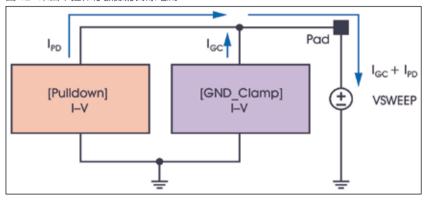


圖 13:ADxxxx DOUT1 上拉設定和結果。

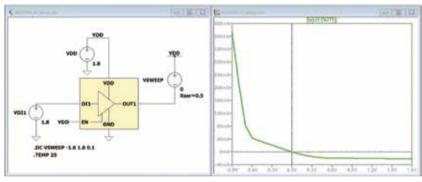
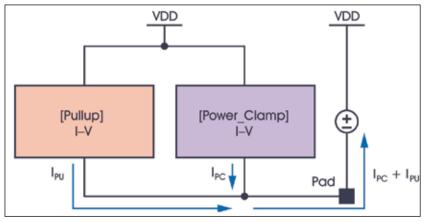



圖 14: 來自保存的 [上拉]數據的實際電流。

並且以 VDD 為基準。以如此方式連接 VSWEEP,可以防止使用者格式化數 據以符合 IBIS 規範。

與[下拉]一樣,保存的[上拉] 數據是從 [Power_ Clamp] 和 [上拉] 總電流得出的結果。因此,使用者需 要從保存的[上拉]數據中逐點減去 數據,以去除 [Power_Clamp] 元件, 如果它們的直流掃描參數相同,這很 容易完成。提醒大家,對所有的 I-V 數據測量使用相同的直流掃描參數。

[C comp]

[C comp] 關鍵字代表緩衝器的 雷容,其最小、典型和最大拐角的值 各不相同。其是電晶體和晶片的電 容,與封裝電容不同。可以採用兩種 方式擷取 [C_comp]。當接腳由交流 電壓供電時,可以使用公式1中的公 式來得出近似值,也可以使用公式2 中的公式進行計算。

$$C_{comp} = C_{IN} - C_{Package} \tag{1}$$

$$C_{comp} = -\frac{(Im_{Iac})}{2 \times \pi \times f \times V_{AC}}$$
 (2)

其中:

■ Imlac:被測電流的虛值

■F:交流電源的頻率

■ VAC: 交流電源的幅度

使用 LTspice 進行 C Comp 提取

如圖 15 所示,可透過提供交流 電壓和頻率掃描來提取緩衝器電容。 由於提供的是交流電壓,所以要測量 電流的實部和虛部部分。當用交流電 壓供電時, 必須反轉電流的極性, 以

圖 15:ADxxxx C_comp 擷取設定。

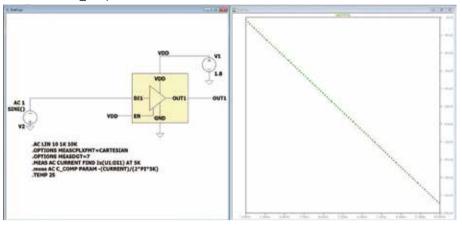


圖 16: 向圖中增加佈線對話方塊。

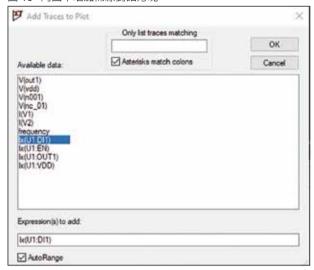


圖 17: 將圖設定從波特改成笛卡爾。

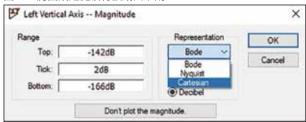
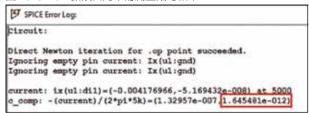



圖 18:SPICE 錯誤日誌中的測量語句結果。

測量緩衝器的輸入電流值。測量輸出緩衝器電容時, 對於圖 15 所示的圖,唯一要做的更改就是必須將交 流電源連接至輸出接腳。

交流電壓的幅值可以是任意值,但通常設定為 1 V。其將按照 SPICE 指令進行頻率掃描。使用 .AC 命令繪製波形時,默認設定為以波特模式顯示,單位為 dB。必須將其設定為笛卡爾模式才能查看電流值,這樣可以直接使用緩衝器電容公式進行處理。要查看緩衝器電容波形,使用者必須先按右鍵

波形視窗,然後按一下增加佈線,再選擇被測量的接腳。波形圖視窗將顯示兩條線。

實線表示被測電流的實部,虛線表示被測電流的虛部。

若要將圖形設定從波特改為笛卡爾,按右鍵波 形視窗左側的 y 軸,以打開左縱軸一幅度對話方塊。 然後將圖示方式從波特改為笛卡爾。

用於 C Comp 設定的 LTspice 指令

LTspice 指令用於設定電路的工作模式、測量變數和過程參數,以計算 C_comp。以下是用來測量緩衝器的 C comp 值的 LTspice 指令:

- .AC Lin 10 1k 10k: 將電路的工作模式設定為從 1 kHz 至 10 kHz 的交流線性頻率掃描。
- ■.Options meascplxfmtu:將.meas 命令的默認結果更改為波特、奈奎斯特或笛卡爾模式。
- ■.Options measdgt:設定.meas 語句的有效數字 位數。
- ■.meas 語句:這些指令用來找出電路中某些參數 的值。

這些 SPICE 指令可根據使用者想要顯示的參數進行修改。有關在 LTspice 中可使用的指令的詳細說明,請參閱 LTspice Help。測量語句的結果可以在工具 > SPICE 錯誤日誌中查看。

SPICE 錯誤日誌中顯示的結果將採用笛卡爾形式。X 座標為電流和緩衝電容的實部,Y 座標為電

流和緩衝器電容的虛部。如上所 述,在測量緩衝器電容時,電流的 虚部是緩衝器電容所需的部分,所 以 C comp 的實際值就是圖 18 中 突出顯示的值。

[上升波形]和[下降波 形1

什麽是上升和下降波形?

[上升波形]和[下降波形] 關鍵字類比輸出緩衝器的切換行 為。對於輸出模型,建議包含四個 V-T 數據集:上升和下降波形,以 地為基準載入;上升和下降波形, 以 VDD 為基準載入。

提取上升和下降 V-T 數據

要在LTspice中提取OUT1 的上升或下降波形,以分段線件 (PWL) 訊號或將脈衝電壓電源的 形式向輸入接腳發送升緣或降緣輸 入激勵。模擬中使用的輸入刺激的 轉換必須要快,以便為模型提取出 最快的輸出轉換。在測量輸出接腳 的電壓時,將使用.TRAN命令對 原理圖進行瞬態分析。將一個 50 Ω 電阳用作負載,用於提取 3 態輸 出緩衝器的 4 個 V-T 波形的數據, 但其可能會因緩衝器設計和驅動能 力有所不同,以進行輸出轉換。 50 Ω 為 V-T 數據提取的預設載入 值,因為其是PCB 佈線電阳的典 型值。將 50 Ω 負載連接到緩衝器 相對地(載入至接地)或 VDD(載 入至 VDD) 的輸出接腳。

圖 19: 使用脈衝電壓電源的採樣升緣輸入刺激。

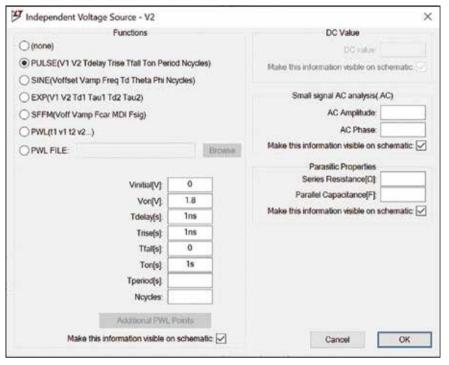


圖 20: 透過以地為基準的 50 Ω 負載獲取下降波形的 ADxxxx 設定。

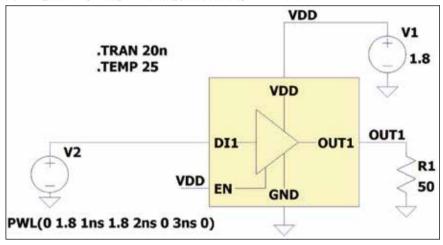
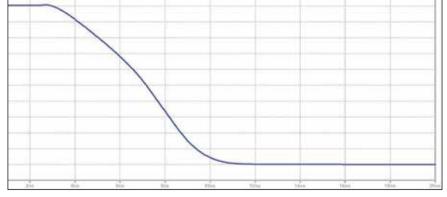



圖 21: 透過以地為基準的 50 Ω 負載獲取下降波形的 ADxxxx 結果。

透過以地為基準 50 Ω 負載獲取下降波形

透過以 VDD 為 基準 50 Ω 負載 獲取下降波形

圖 22 顯示透 過以 VDD 為基準 50 Ω 負載獲取下 降波形的設定和結果。如圖所示,要 完全捕獲輸出的下 降躍遷,需要 50 ns 瞬態時間。

透過以地為基準 50 Ω 負載獲取上升波形

對於上升波

形,採用 PWL 訊號形式的升緣輸入刺激。圖 23 中的設定顯示,負載電阻連接至相對於地的輸出接腳,

透過以地為基圖 22: 採用以 VDD 為基準 50Ω 負載的 ADxxxx 設定和 DOUT1 下降波形圖。

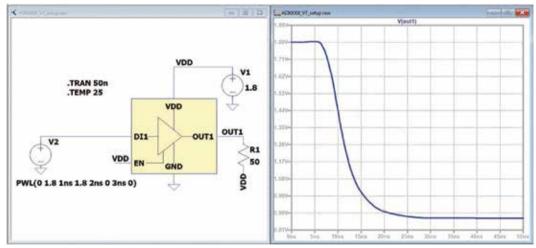


圖23:採用以地為基準50 Ω負載的ADxxxx設定和DOUT1上升波形圖。

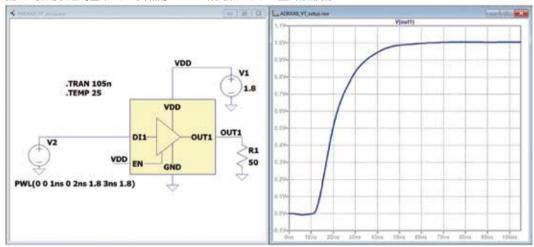
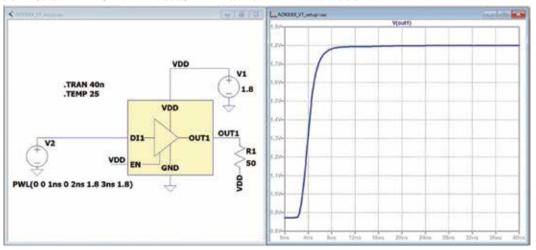
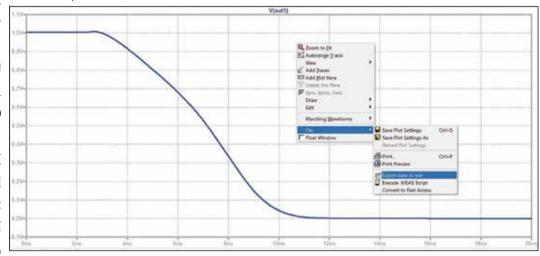



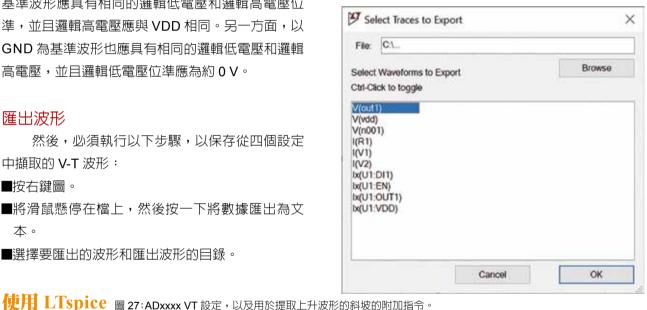
圖 24: 採用以 VDD 為基準 50 Ω 負載的 ADxxxx 設定和 DOUT1 上升波形圖。


這將產生上升負載對地的 V-T 數據。

負載連接至圖25: 將 LTspice 圖保存為文字檔。 VDD 時的上升 波形

使用相同的 升緣輸入刺激,但 50 Ω 需要以 VDD 為基準。

檢 杳 V-T 數 據正確性的一種 方法是查看邏輯 低電壓和邏輯高 電壓。在 VDD 為


基準波形應具有相同的邏輯低電壓和邏輯高電壓位 準,並且邏輯高電壓應與 VDD 相同。另一方面,以 GND 為基準波形也應具有相同的灑輯低電壓和灑輯 高電壓,並日羅輯低電壓位準應為約0V。

匯出波形

然後,必須執行以下步驟,以保存從四個設定 中擷取的 V-T 波形:

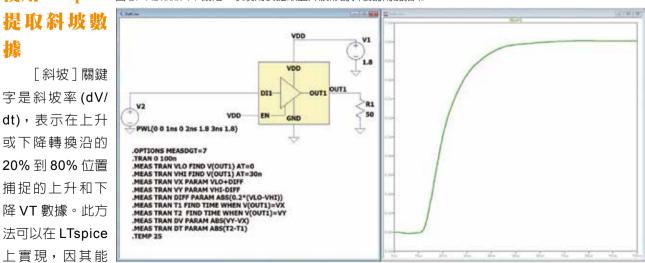

- ■按右鍵圖。
- ■將滑鼠懸停在檔上,然後按一下將數據匯出為文
- ■選擇要匯出的波形和匯出波形的目錄。

圖 26: 選擇佈線,設定保存目錄。

提取斜坡數

[斜坡]關鍵 字是斜坡率(dV/ dt),表示在上升 或下降轉換沿的 20% 到 80% 位置 捕捉的上升和下 降 VT 數據。此方

夠使用.MEAS 和.PARAM 指 圖 28: 上升斜坡波形描述。 令計算這些參數。可透過在 VT 波形設定上增加 SPICE 指 令來完成斜坡擷取過程。這表 示斜坡和 VT 波形可以同時提 图2。

圖 27 顯示上升波形斜坡 計算的設定。為了計算下降波 形的斜坡,應該互換 VLO 和 VHI的時間值,因為下降斜坡 的輸出波形從緩衝器的邏輯高 位準開始, 並轉變為邏輯低位 淮。

用於斜坡提取的 LTspice 指令

用於斜坡提取的 SPICE 指 令 如 下:.TRAN, 這 是 用於VT上升/下降波形的 SPICE 指 令;.OPTIONS, 用於將 SPICE 錯誤日誌上顯 示的輸出設定為笛卡爾模式, 並將其限制為所需的有效位 數;.MEAS,用於斜坡的實際 計算。

- VLO:表示邏輯低電壓。
- ■VHI:表示灑輯高電壓。
- Diff:表示轉換的 20% 點位置的電壓,該電壓將 分別與 VLO 和 VHI 參數相加和相減,以得到轉換 的 20% 和 80% 點位置。
- VX 和 VY:表示上升 / 下降轉換緣的 20% 和

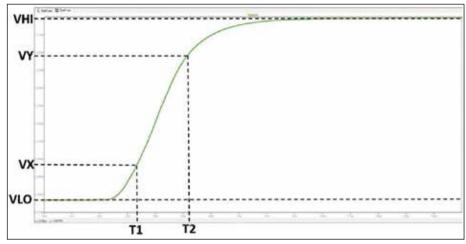


圖 29:SPICE 錯誤日誌,用於計算斜坡率。

SPICE Error Log:

Circuit:

Direct Newton iteration for .op point succeeded. Ignoring empty pin current: Ix(u1:gnd)

Ignoring empty pin current: Ix(u1:gnd)

vlo: v(out1)=0.8722517 at 0

vhi: v(out1)=1.798981 at 2.4e-008

vx: vlo+diff=1.057598 vy: vhi-diff=1.613635

diff: abs(0.2*(vlo-vhi))=0.1853458

t1: time=3.350427e-009 at 3.350427e-009

t2: time=5.192001e-009 at 5.192001e-009

dv: abs(vy-vx)=0.5560373

dt: abs(t2-t1)=1.841574e-009

80%點位置的電壓。

■dV 和 dT: 這些是 IBIS 模型的 [斜坡] 關鍵字的 計算值。cta

下期預告

IoT/Edge Computing